
Data Analytics Engineering
For Accountants and Auditors

Stewart Li

2024-03-08

Table of contents

Preface 3

I Infrastructure 4

1 Local 6

2 ELT 20

3 HTTP 22

4 FAudit 26

II Data tools 31

5 Polars 35

6 Analysis 40
6.1 IO . 40
6.2 Cleaning . 41
6.3 Validate . 41
6.4 Munging . 42
6.5 EDA . 43
6.6 Model . 45
6.7 Report . 46

7 Audit 48
7.1 Cleaning . 48
7.2 Procedure . 50
7.3 Enhanced . 51

References 55

2

Preface

This book documents the data analytics engineering workflow, which contains two parts namely
infrastructure and tools. It focuses on its implementation instead of its setup. macOS is left
out as Windows OS is widely used in the business setting. Pick the preferred tools after
considered your career path. For instance, data/dev ops, data/analytic/ML engineer, and
data analyst/scientist. My goal is to have a better solution to do auditing/accounting job
easily (powerful tools), accurately (reproducible process), and automatically (job scheduler).
If you don’t know what I am talking about, watch data firm, financial statement preparation,
insurance data analysis, and read the paper (Li, Fisher, and Falta 2020).

You might ask how it relates to you. Generally, CFO is charge of COA, Audit partner empha-
size accounting treatments, and staffs do their job at the transactional level. You need much
better tools to pan out at work. For instance,
1. New job requires the strong analytic mind. Excel or similar tools are not sufficient for
pattern recognition.
2. A higher staff turnover is caused by pressure and boredom. You need to be efficient by
automating repetitive work such as reconciliation.

3

https://www.youtube.com/watch?v=na7yqvz5-B4&list=PLGVZCDnMOq0peDguAzds7kVmBr8avp46K&index=60
https://www.youtube.com/watch?v=JsaGSrM8aZ0
https://www.youtube.com/watch?v=UzpeG20eA8o

Part I

Infrastructure

4

The knowledge of linux (Ubuntu LTS) terminal will be beneficial when you use remote AWS
services. For instance,
1. awscli, terraform,
2. docker, podman, k8,

ELT seems better than ETL as you normally don’t know the part of transformation upfront.

5

1 Local

My OS is Windows 11. Install Window manager komorebi, Windows Terminal wsl2, and
Linux distribution systems. Edit terminal theme/font, dotfiles of Bash/Tmux/Vim, and env
variables. Install Git/GitBash and Docker/Podman if needed.

Figure 1.1: Desktop

Install programming languages R/Python/DuckDB/Rust/Go. R is a language designed to
get shit done (@hadleywickham). Python is a glue language. Rust is a decent language for
software engineering. I often live in terminal to rofi applications, manage pass, rsync files,
quarto markdown, sftp to server, ssh into remote machines, and do a quick analysis for ad
hoc tasks.

Editors like nano (Linux) and notepad (Windows) can be used for their simplicity. However,
appropriate IDE helps you organize your project better. I choose Vim (Linux), RStudio
(Windows), and VS Code (Both) based on the active development environment. Of course,
RStudio can be launched in Linux as well.

6

Figure 1.2: CMD

Figure 1.3: PowerShell

7

Figure 1.4: Ubuntu

Figure 1.5: Terminal tools

8

Figure 1.6: R, Python, DuckDB

Figure 1.7: Vim - R

9

Figure 1.8: Vim - Python

Figure 1.9: Tmux - Nvim 1

10

Figure 1.10: Tmux -Nvim 2

Figure 1.11: Tmux - Nvim 3

11

Figure 1.12: Tmux -Nvim 4

Figure 1.13: RStudio - R

12

Figure 1.14: RStudio - Python

Figure 1.15: VS Code in Linux - Jupyter

13

Figure 1.16: VS Code in Linux - Interactive cell

Figure 1.17: VS Code in Windows - Script

14

Figure 1.18: VS Code in Windows - Interactive cell

Figure 1.19: VS Code in Windows - R

15

It is vital to create a proper folder structure along with config file as you are able to move
quickly and organize your scripts better. I run a command line tool (written in R) from
GitBash and PowerShell to do it.

Figure 1.20: CLI R - GitBash 1

16

Figure 1.21: CLI R - GitBash 2

Figure 1.22: CLI R - GitBash 3

17

Figure 1.23: CLI R - GitBash 4

Figure 1.24: CLI R - GitBash 5

18

Figure 1.25: CLI R - PowerShell 1

Figure 1.26: CLI R - PowerShell 2

19

2 ELT

Consider the following examples to establish a data pipeline.
1. A zip file lands in data lake (s3/minio) daily.
2. Execute scripts in the server (ec2) to download/unzip/select/upload files based on mtime.
It produces a file (csv) to track work done at the agreed cut-off time (cron). AWS lambda is
another option.
3. snowflake external stage (s3) is triggered by a file (txt) to kicks off snowpipe and ingest
data to DB as variant. Similar storage are databrick, dremio, clickhouse. The preferred
formats are parquet, iceberg, ADBC.
4. Move data between platforms via airbyte.
5. Validate and transform DB raw to DB mart through dbt.
6. Automatize the process by a task scheduler prefect, airflow, dagster.
7. Create a dashboard for DB mart via metabase, superset.

Figure 2.1: DuckDB cloud

20

Figure 2.2: DuckDB terminal

21

3 HTTP

It is very useful to create a micro service API internally.

Figure 3.1: Web server

httr2::request('localhost:3000/share') %>%
httr2::req_perform() %>%
httr2::resp_body_string()

22

Figure 3.2: Get

Figure 3.3: Post

23

Figure 3.4: Template

Figure 3.5: R client

24

Figure 3.6: Request CLI 1

Figure 3.7: Request CLI 2

25

4 FAudit

Create a command line tool to organize the workflow including folder structure and relevant
config files.

Figure 4.1: faudit help

26

Figure 4.2: faudit init

Figure 4.3: faudit new 1

27

Figure 4.4: faudit new 2

Figure 4.5: faudit report

28

Figure 4.6: faudit new 3

Figure 4.7: faudit new 4

29

Figure 4.8: faudit show

30

Part II

Data tools

31

SQL, R, Python, Julia, Rust, and JavaScript can be used interchangeably to perform data
work at most of the time. Choose programming languages and relevant packages based on
your needs and personal preference.

Assess your IO scenario after considered the followings.
How big is data?
1. Memory:
- datatable, collapse, duckdb, polars,
- ibis, DataFusion, deltalake,
2. Hard disk:
- arrow,
3. Cluster:
- spark, dask,

Where data lives?
1. DB:
- DBI, odbc, SQLAlchemy, connectorx, sqlx,
2. SFTP:
- RCurl, paramiko,
3. Blob:
- pins, aws.s3, s3fs, boto3,

In what form? The preferred file types are txt, csv, parquet, feather.
1. Excel:
- tidyxl, unpivotr, openxlsx, openpyxl,
2. Word:
- officer, docx,
3. PPT:
- officer, python-pptx,
4. PDF:
- pdftools, PDFminer, PyPDF2, pdfplumber,
5. SAS:
- haven,
6. Image:
- magick, tesseract, pillow, cv2,
7. Geo:
- sf, countrycode,
8. API:
- httr2, request, reqwest,
- jsonlite, yaml, toml,
9. Website:
- html, xml, rvest, bs4,
- v8, chromote, selenium, playwright,

32

https://www.youtube.com/watch?v=O42LUmJZPx0

In what data structure and type?
1. Data type:
- numeric, string, bool, factor, date,
2. Data collection:
- list, vector, data.frame (cell/0 row/1 column),
3. Verb:
- count/sort/select/filter/mutate/summarize/pivot/join,

Analysis work is to produce meaningful insight via slice dice. Classify a set of tools based on
the following analytics steps. To reduce repetitive work, you can create functions, OOP, box,
package, and cli.
1. Interact with DB:
- dbplyr, dbplot, dbcooper,
2. Data cleaning:
- base, tidyverse, pandas,
- janitor, glue, tidylog,
- waldo, diffobj, compareDF,
3. Data validation:
- pointblank, validate, pandera, greate expectation, pydantic,
4. Data visualization1:
- grid, patchwork, ggfx, ggtext, showtext,
- ragg, scales, formattable, sparkline,
- gghighlight, ggforce,
- imager, imagerExtra, ggimage, ggpubr,
- igraph, ggraph, tidygraph, networkD3, visNetwork,
- DiagrammeR, UpSetR, tmap,
5. Table:
- gt, gtExtras, gtsummary, modelsummary,
- flextable, kableExtra,
6. EDA:
- skimr, naniar, visdat, inspectdf,
7. Stats:
- corrplot, tidylo, widyr, broom,
8. Report:
- quarto, whisker, target, jinja2,
9. API deploy:
- vetiver, plumber, fastapi,
10. Dashboard:
- shiny, htmltools, htmlwidgets, crosstalk, leaflet,
- bslib, thematic, sass,
- DT, reactable, reactablefmtr,
- plotly, echarts4r, bokeh,

1ggplot2 (Wickham 2016)

33

- dash, streamlit,
11. WASM:
- webr, pyodide, wasm_bindgen,
12. GUI:
- PyAutoGUI,
- Tkinter, PyQt5,

Consider other utility tools when necessary.
1. Environment:
- rvenv, venv,
2. Helper:
- cli, crayon,
- clipr, withr, callr, pingr, curl,
3. Email:
- blastula, emayili, smtplib, pywin32,
4. Unzip:
- archive, zipfile,
5. FFI:
- rlang, vctrs, lobstr, S7,
- cpp11, Rcpp, extendr, pyo3, bindgen,

34

https://automatetheboringstuff.com/
https://www.youtube.com/@codefirstwithhala

5 Polars

Command line tools allow you to do those repetitive data work easily. The following three
examples are.
1. argparse and duckdb.
2. click and polars.
3. clap and polars.

Figure 5.1: CLI - argparse 1

35

Figure 5.2: CLI - argparse 2

Figure 5.3: CLI - argparse 3

36

Figure 5.4: CLI - click 1

Figure 5.5: CLI - click 2

37

Figure 5.6: CLI - click 3

Figure 5.7: CLI - click 4

38

Figure 5.8: CLI - clap 1

Figure 5.9: CLI - clap 2

39

6 Analysis

Factored Accounts Receivable - The biggest challenge of Factoring is to predict if and when
invoices will be paid. The factor provides funds against this future payment to the business
by buying their invoice. The factor then collects the payment and charges their interest rate.
If the invoice isn’t paid, the factor loses their advanced funds. Try using this data set for
predicting when payments will be made. Get the data here.

6.1 IO

df_raw <- read_csv(here::here('data/factor_ar.csv')) %>%
janitor::clean_names()

glimpse(df_raw)

data.table is the fastest IO tool if your data can fit in the memory.

library(data.table)

read in
data.table::fread("grep -v '770' ./data/factor_ar.csv")[, .N, by = countryCode]

write out
df_dt <- as.data.table(df_raw)

df_dt[,
fwrite(data.table(.SD),

paste0("C:/Users/Stewart Li/Desktop/res/",
paste0(country_code, ".csv"))), by = country_code]

read in
data.table(
country_code.csv = Sys.glob("C:/Users/Stewart Li/Desktop/res/*.csv")

)[, fread(country_code.csv), by = country_code.csv]

40

https://www.kaggle.com/datasets/hhenry/finance-factoring-ibm-late-payment-histories

Get to know your data. For instance, any missing value, counting variables, and others.

no NA
sapply(df_raw, function(x) {sum(is.na(x)) / nrow(df_raw)}) %>%
enframe() %>%
mutate(value = formattable::percent(value))

naniar::gg_miss_var(df_raw)
naniar::vis_miss(df_raw)

no duplicate
df_raw %>% count(invoice_number, sort = TRUE)

overview of data
skimr::skim(df_raw)

6.2 Cleaning

After having a basic understanding about data, do the followings to clean it up.
1. cast data types.
2. 30 days credit term is allowed. drop it subsequently (constant).
3. drop column (paperless_date).
4. rename and rearrange columns.

df_clean <- df_raw %>%
mutate(across(contains("date"), lubridate::mdy),

across(c(country_code, invoice_number), as.character)) %>%
mutate(credit = as.numeric(due_date - invoice_date)) %>%
select(c(country_code, customer_id, paperless_bill, disputed,

invoice_number, invoice_amount, invoice_date, due_date, settled_date,
settle = days_to_settle, late = days_late))

setdiff(colnames(df_raw), colnames(df_clean))

6.3 Validate

Validate data if it is received from other team members.

41

data type
df_clean %>%
select(contains("date")) %>%
pointblank::col_is_date(columns = everything())

cross checking
df_clean %>%
mutate(settle1 = as.numeric(settled_date - invoice_date),

late1 = as.numeric(settled_date - due_date),
late1 = if_else(late1 < 0, 0, late1)) %>%

summarise(late_sum = sum(late1) - sum(late),
settle_sum = sum(settle1) - sum(settle))

6.4 Munging

Ask reasonable questions via slice dice.

window operation: lag, first, nth,
df_clean %>%
arrange(invoice_date) %>%
group_by(country_code) %>%
mutate(increase = invoice_amount - dplyr::lag(invoice_amount, default = 0),

indcator = ifelse(increase > 0, 1, 0)) %>%
ungroup() %>%
mutate(settle_grp = (settle %/% 10) * 10)

df_clean %>%
group_by(country_code) %>%
arrange(invoice_date) %>%
summarise(n = n(),

sales = sum(invoice_amount),
first_disputed_late = first(late[disputed == 'Yes']),
first_disputed_inv_date = first(invoice_date[disputed == 'Yes']),
largest_late = max(late[disputed == 'Yes']),
largest_inv_amt = invoice_amount[late == max(late)],
.groups = 'drop')

Cut late into four categories based on the firm’s credit policy.

42

sort(unique(df_clean$late))

df_late <- df_clean %>%
dplyr::filter(late != 0) %>%
mutate(reminder = case_when(late > 0 & late <= 10 ~ "1st email",

late > 10 & late <= 20 ~ "2nd email",
late > 20 & late <= 30 ~ "legal case",
TRUE ~ "bad debt"))

anomaly by country
df_late %>%
ggplot(aes(late, disputed, color = country_code)) +
geom_boxplot() +
theme_light()

summary table
df_late %>%
group_by(reminder, disputed) %>%
summarise(across(late, tibble::lst(sum, min, max, sd)),

.groups = 'drop') %>%
gt::gt()

clients without dispute do not pay.
df_late %>%
dplyr::filter(disputed == 'No', reminder %in% c('legal case', 'bad debt'))

6.5 EDA

Focus on a handful of variables after dropped others.

df <- df_clean %>%
select(-c(contains('date'), invoice_number))

freq table
with(df, table(disputed, country_code) %>% addmargins())
tapply(df$invoice_amount, list(df$disputed, df$country_code), median)

descriptive stats
df %>%

43

Figure 6.1: Data munging

select(where(is.numeric)) %>%
summary()

normal distribution
df %>%
ggplot(aes(invoice_amount, fill = disputed)) +
geom_histogram(bins = 10, position = 'dodge') +
geom_vline(xintercept = median(df$invoice_amount), color = 'red',

size = 3, linetype = "dashed") +
theme_light()

correlation
df %>%
select(where(is.numeric)) %>%
cor() %>%
corrplot::corrplot(method = 'color', order = 'FPC', type = 'lower', diag = FALSE)

df %>%
select(where(is.numeric)) %>%

44

corrr::correlate() %>%
corrr::rearrange() %>%
corrr::shave() %>%
corrr::fashion()

6.6 Model

Read more about logistic regression here, here, and here.

easy stats plot
df %>%
mutate(prob = ifelse(disputed == "Yes", 1, 0)) %>%
ggplot(aes(late, prob)) +
geom_point(alpha = .2) +
geom_smooth(method = "glm", method.args = list(family = "binomial")) +
theme_light()

model comparison
df_mod <- df %>%
mutate(disputed = as.factor(disputed))

mod1 <- glm(disputed ~ late, family = "binomial", data = df_mod)
mod2 <- glm(disputed ~ late + settle + invoice_amount,

family = "binomial", data = df_mod)

summary(mod1)
anova(mod1, mod2, test = "Chisq")

model diagnostic
df_mod_res <- broom::augment(mod1, df_mod) %>%
mutate(pred = ifelse(.fitted > .5, "Yes", "No") %>% as.factor())

confusion matrix
df_mod_res %>%
yardstick::conf_mat(disputed, pred) %>%
autoplot()

plot pred
df_mod_res %>%

45

https://uc-r.github.io/logistic_regression
https://www.r-bloggers.com/2018/11/interpreting-generalized-linear-models/
https://juliasilge.com/blog/bird-baths/

mutate(res = disputed == pred) %>%
ggplot(aes(invoice_amount, settle, color = res)) +
geom_point() +
theme_light()

df_mod_res %>%
ggplot(aes(invoice_amount, settle, color = disputed)) +
geom_point() +
facet_wrap(~pred) +
theme_light()

6.7 Report

library(patchwork)
library(ggtext)
library(showtext)

p1 <- df %>%
ggplot(aes(invoice_amount, settle, color = disputed)) +
geom_point() +
scale_color_manual(labels = c("Agreed", 'Disputed'),

values = c("#9AC2BB", '#E99184')) +
guides(color = guide_legend(title.position = "top", title = "")) +
labs(x = "", y = "Settlement days") +
theme_light() +
theme(

legend.position = c(.95, .98),
legend.background = element_rect(color = "transparent", fill = 'transparent'),
legend.box.background = element_rect(color = "transparent", fill = "transparent"),
legend.key = element_rect(colour = "transparent", fill = "transparent")

)

p2 <- df %>%
group_by(if_late = late == 0) %>%
ggplot(aes(invoice_amount, settle, color = disputed)) +
geom_point(show.legend = FALSE) +
scale_color_manual(labels = c("Agreed", 'Disputed'),

values = c("#9AC2BB", '#E99184')) +
facet_wrap(~if_late) +

46

labs(caption = "©RAudit Solution | **Stewart Li**
(Data source: Kaggle)",
x = "Invoice amount",
y = "Settlement days") +

theme_light() +
theme(

axis.title.y = element_text(margin = margin(b = 1, unit = "in")),
strip.text = element_text(color = '#2D4248'),
strip.background = element_blank(),
plot.caption = element_markdown(lineheight = 1.2)

)

p1 / p2 +
plot_annotation(

title = "The Analysis of cash collection",
subtitle = 'Focus on those slow settlement without dispute',
tag_levels = 'A'

) &
theme(plot.tag = element_text(size = 8),

plot.title = element_markdown())

Figure 6.2: Combined plot

47

7 Audit

[To my understanding] Audit includes tools and work stipulated by Standards. Audit Data
Analytics (ADA) replaces excel-related tools with R/Python to improve efficiency/effectiveness.
It does not necessarily reduce audit work required by ISCA. The following example is to audit
expense claim based on data from payroll, hr, and finance departments, which demonstrates
ADA is a vital move for auditors from all possible perspectives.

Compared to excel-related tools, it could be easily used to test audit assertions (e.g., occurrence,
existence, completeness, cut-off, valuation, classification) after reconciled in terms of P2P, O2C,
Payroll, R2R, GL.
1. benefit: version control diff, lightweight size, powerful 1m rows, automation script.
2. pattern recognition: spot deviation and inconsistency.

It also addresses common mistakes throughout the audit process. For instance,
1. version control: which version of PBC data is the latest?
2. reproducible: my result is different from yours after rerun.
3. report: check if number in working papers tally to those in financial statement.
4. automation: roll out audit work next year by copy+paste.

7.1 Cleaning

exp_claim_raw <- readxl::read_excel("isca_cpe_2023/1. Anomalies in Payroll data.xlsx",
sheet = 1,
range = "A1:G33") %>%

janitor::clean_names()

hr_data_raw <- readxl::read_excel("isca_cpe_2023/1. Anomalies in Payroll data.xlsx",
sheet = 2) %>%

janitor::clean_names()

pay_data_raw <- readxl::read_excel("isca_cpe_2023/1. Anomalies in Payroll data.xlsx",
sheet = 3,
skip = 2, range = "A3:D25") %>%

janitor::clean_names()

48

Figure 7.1: Diff 1

Figure 7.2: Diff 2

49

df_comb <- exp_claim_raw %>%
full_join(hr_data_raw, by = c('staff_id' = 'staff_id')) %>%
left_join(pay_data_raw, by = c('staff_id' = 'staff_id'))

df_clean <- df_comb %>%
mutate(across(contains("date"), lubridate::dmy)) %>%
mutate(on_leave = lubridate::dmy(on_leave)) %>%
mutate(staff_name = coalesce(staff_name, name.x))

check if amount is correct
sum(df_clean$amount_s.x, na.rm = TRUE)

df_clean %>%
distinct(staff_id, amount_s.y) %>%
summarise(app_c = sum(amount_s.y, na.rm = TRUE))

sheets <- list("comb" = df_comb, "clean" = df_clean)
writexl::write_xlsx(sheets, here::here(paste0('audit_sit/audit_payroll', Sys.Date(), '.xlsx')))
openxlsx::openXL(here::here("audit_sit/audit_payroll2023-12-22.xlsx"))

df_clean <- readxl::read_excel(here::here("audit_sit/audit_payroll2023-12-22.xlsx")) %>%
mutate(across(c(contains("date"), on_leave), lubridate::dmy))

7.2 Procedure

cross check payroll amount against finance amount
df_clean %>%
group_by(staff_id, staff_name) %>%
summarise(amt_exp = sum(amount_s.x),

amt_paid = sum(amount_s.y) / n(),
amt_diff = amt_exp - amt_paid,
.groups = 'drop')

compare date to ensure no claim happens before incurred or after resigned
df_clean %>%
dplyr::filter(claim_date > expense_date)

50

df_clean %>%
dplyr::filter(claim_date > last_date | claim_date == on_leave)

identify multiple claims for the same expense
df_clean %>%
group_by(staff_id, staff_name, purpose, amount_s.x) %>%
dplyr::filter(n() > 1)

ensure staff name and their bank account number updated timely
df_clean %>%
dplyr::filter(!is.na(edits_to_hr_data),

bank_account_no.x == bank_account_no.y)

df_clean %>%
dplyr::filter(name.x != name.y)

produces audit working paper
library(pointblank)

ag <- df_clean %>%
create_agent(label = "A very *simple* example.", tbl_name = "payroll") %>%
col_vals_between(columns = claim_date, left = vars(expense_date), right = vars(last_date)) %>%
interrogate()

ag

7.3 Enhanced

df_clean %>%
count(staff_name, sort = TRUE)

df_clean %>%
dplyr::filter(grepl("\\d+?", purpose)) %>%
mutate(purpose = gsub("\\d+?", "", purpose)) %>%
mutate(across(where(is.character), ~na_if(., "AB99"))) %>%
mutate(staff_id = replace_na(staff_id, 0))

51

Figure 7.3: Audit Procedure 1

Figure 7.4: Audit Procedure 2

52

df_clean %>%
select(contains("date"), purpose) %>%
mutate(if_taxi = case_when(str_detect(purpose, "Taxi") ~ "taxi",

TRUE ~ "other"),
total_date = lubridate::floor_date(claim_date, "week"),
first_date = first(total_date)) %>%

slice_max(order_by = claim_date, n = 3)

df_clean %>%
dplyr::filter(!is.na(amount_s.x)) %>%
mutate(new = (amount_s.x %/% 100) * 100) %>%
group_by(new, amount_s.x > 300) %>%
summarise(new1 = mean(amount_s.x), .groups = 'drop')

df_clean %>%
dplyr::filter(!is.na(staff_name)) %>%
group_nest(staff_id, staff_name) %>%
mutate(new = map(data, ~pluck(.x, 4))) %>%
mutate(new1 = map(new, ~paste(.x, collapse = '|'))) %>%
select(-data, -new) %>%
unnest(new1)

df_clean %>%
dplyr::filter(!is.na(staff_name)) %>%
select(staff_id, staff_name, purpose) %>%
summarise(new1 = paste(purpose, collapse = '|'), .by = c(staff_id, staff_name))

df_clean %>%
select(staff_id, staff_name, division, purpose, amount_s.x) %>%
dplyr::filter(!is.na(purpose)) %>%
separate(purpose, into = c("type", "info"),

extra = 'merge', remove = FALSE, fill = 'right') %>%
group_by(division, type) %>%
summarise(n = n(),

amt_type = sum(amount_s.x), .groups = 'drop') %>%
arrange(-amt_type)

library(lubridate)

df_clean %>%

53

pivot_longer(cols = where(is.Date),
names_to = 'activity_date',
values_to = 'detail_date',
names_pattern = "(.*)_.*",
names_transform = list(activity_date = toupper))

54

References
Li, Stewart, Richard Fisher, and Michael Falta. 2020. “The Effectiveness of Artificial Neural

Networks Applied to Analytical Procedures Using High Level Data: A Simulation Analysis.”
Meditari Accountancy Research 29 (6): 1425–50. https://doi.org/10.1108/medar-06-2020-
0920.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. https://ggplot2.tidyverse.org.

55

https://doi.org/10.1108/medar-06-2020-0920
https://doi.org/10.1108/medar-06-2020-0920
https://ggplot2.tidyverse.org

	Preface
	Infrastructure
	Local
	ELT
	HTTP
	FAudit

	Data tools
	Polars
	Analysis
	IO
	Cleaning
	Validate
	Munging
	EDA
	Model
	Report

	Audit
	Cleaning
	Procedure
	Enhanced

	References

